Anti-infective Drugs
Advisory Committee
(CABP)

Ceftaroline fosamil

Cerexa, Inc.
A subsidiary of Forest Laboratories, Inc.

07 September 2010
Introduction
Ceftaroline fosamil

Dirk Thye, MD
President
Cerexa, Inc.
Ceftaroline Description

• A novel intravenous cephalosporin

• Broad-spectrum activity
 – Gram-positive bacteria (eg, *Streptococcus pneumoniae*, *Staphylococcus aureus*)
 – Gram-negative bacteria (eg, *Escherichia coli*, *Klebsiella pneumoniae*, *Haemophilus influenzae*)

• Potent activity vs contemporary resistant pathogens
 – MRSA, MDRSP

• Demonstrated efficacy in CABP and cSSSI

• Well tolerated with safety profile reflective of cephalosporin class
Proposed Indications

- Ceftaroline is indicated for patients with CABP caused by susceptible isolates of gram-positive and gram-negative microorganisms:
 - *S. pneumoniae* (including MDRSP and cases with concurrent bacteremia)
 - *S. aureus* (MSSA)
 - *H. influenzae*
 - *H. parainfluenzae*
 - *K. pneumoniae* (ceftazidime susceptible)
 - *E. coli* (ceftazidime susceptible)

- **Proposed dose**
 - 600 mg q12h IV over 1 hour
 - 400 mg q12h IV over 1 hour for subjects with moderate to severe renal impairment (CrCl < 50 mL/min)
Program Overview

<table>
<thead>
<tr>
<th>17 Studies</th>
<th>11 Phase 1 Studies</th>
<th>Two Phase 2 Studies</th>
<th>Four Phase 3 Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Healthy adults</td>
<td>2 cSSSI Studies</td>
<td>2 CABP Studies</td>
</tr>
<tr>
<td></td>
<td>Mild, moderate, severe renal impairment</td>
<td>Intravenous, Intramuscular</td>
<td>2 cSSSI Studies</td>
</tr>
<tr>
<td></td>
<td>ESRD receiving hemodialysis</td>
<td></td>
<td>P903-08, P903-09</td>
</tr>
<tr>
<td></td>
<td>Thorough ECG</td>
<td></td>
<td>P903-06, P903-07</td>
</tr>
<tr>
<td></td>
<td>Elderly</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adolescents</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IM administration</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fecal microflora</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Regulatory History

- **December 2005**: IND submitted
- **February 2006**: Fast Track designation granted
- **October 2007**: End-of-Phase 2 meeting
- **January 2008**: SPA submitted for CABP studies
- **September 2008**: Agreement with FDA on 10% NI margin in CABP for PORT III and IV subjects
- **March 2009**: FDA updates CABP Draft Guidance for Industry
- **July 2009**: Pre-NDA meeting
- **December 2009**: NDA submitted
- **June 2010**: FDA requests exploratory populations & endpoints
Agenda

<table>
<thead>
<tr>
<th>Section</th>
<th>Presenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>Dirk Thye, MD
President – Cerexa, Inc.</td>
</tr>
<tr>
<td>CABP: New Challenges in Treatment</td>
<td>Donald E. Low, MD, FRCPC
Microbiologist-in-Chief
Mt. Sinai Hospital, Toronto</td>
</tr>
<tr>
<td>Microbiology and Clinical Pharmacology</td>
<td>Ian Critchley, PhD
Vice President, Microbiology
Cerexa, Inc.</td>
</tr>
<tr>
<td>Clinical Design and Efficacy</td>
<td>Dirk Thye, MD</td>
</tr>
<tr>
<td>Clinical Safety</td>
<td>David Friedland, MD
Vice President, Clinical Sciences
Cerexa, Inc.</td>
</tr>
<tr>
<td>CABP: Therapeutic Perspective</td>
<td>Donald E. Low, MD, FRCPC</td>
</tr>
</tbody>
</table>
Experts Available to Advisory Committee

Paul G. Ambrose, PharmD, FIDSA
President
Institute for Clinical Pharmacodynamics Inc., Latham, NY

Robertson D. Davenport, MD
Associate Professor and Director of the Blood Bank and Transfusion Service, Department of Pathology
University of Michigan Health System, Ann Arbor, MI

Jamie P. Dwyer, MD
Assistant Professor of Medicine
Department of Medicine, Nephrology and Hypertension Division
Vanderbilt University, Nashville, TN

Gary Koch, PhD
Professor of Biostatistics, Department of Biostatistics
University of North Carolina, Chapel Hill, NC
Financial Disclosure for External Consultants

- All have been paid (directly or through their employer) for their time and travel

- None own stock in Forest Laboratories, Inc.

- Dr. Ambrose is a Cerexa consultant and current SGE serving as temporary member of Anti-infective Advisory Committee, and here today with Agency approval
Community-Acquired Bacterial Pneumonia: Medical Need

Donald E. Low, MD, FRCPC

Microbiologist-in-Chief,
Department of Microbiology

Mount Sinai Hospital, Toronto, Ontario
CABP: Burden of Illness

• 7th leading cause of death in USa

• ~ 5.6 million cases occur annuallyb
 – ~ 1.1 million require hospitalization
 – Over 75% treated as outpatients

• Costs exceed US $8.4 – $10 billion/yeara
 – Inpatient-care costs are ~ 25-times higher than outpatient-care costs

a Mandell LA, et al. Clin Infect Dis 2007
b Am J Respir Crit Care Med 2001
CABP: Pathogens & Antimicrobial Resistance

• Pathogens in moderate-to-severe CABP
 – *Streptococcus pneumoniae*
 – *Staphylococcus aureus*
 – *Haemophilus influenzae*
 – Enteric gram-negative bacilli

• Antibacterial resistance is common
 – Penicillin-nonsusceptible and multidrug-resistant *S. pneumoniae* (PRSP, PISP, MDRSP)
 – Nonvaccine *S. pneumoniae* serotypes (eg, 19A)

• Emerging threat
 – Community-acquired MRSA
The Problem with *S. pneumoniae* Serotype 19A
Now Most Common Invasive Serotype in US and Canada

<table>
<thead>
<tr>
<th>Antimicrobial</th>
<th>MIC<sub>90</sub></th>
<th>% Susceptible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penicillin</td>
<td>4</td>
<td>46.6%</td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>2</td>
<td>65.6%</td>
</tr>
<tr>
<td>Cefuroxime</td>
<td>>8</td>
<td>36.1%</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>>2</td>
<td>26.5%</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>>2</td>
<td>43.4%</td>
</tr>
<tr>
<td>Ceftaroline</td>
<td>0.25</td>
<td>–</td>
</tr>
</tbody>
</table>

189 of 894 isolates (21.1%) were 19A

JMI United States Surveillance Data 2008 (on file)
Sudden Emergence of Ceftriaxone-resistant Pneumococci:
Canadian Bacterial Surveillance Network, 1988-2009

*Non-meningitis breakpoints used
Canadian Bacterial Surveillance Network, March 2010
CABP – Summary

- CABP is one of most common infectious diseases, with heavy burden of illness
- Significant morbidity and mortality despite advances in medical care
- Emerging antimicrobial resistance threatens the utility of our first-line agents
 - MDRSP
 - CA-MRSA
- New safe and effective antibiotics are urgently needed for CABP
Microbiology and Clinical Pharmacology

Ian Critchley, PhD
Vice President, Microbiology
Cerexa, Inc.
Key Microbiology Attributes

• Broad-spectrum bactericidal activity
 – Resistant gram-positive bacteria and common gram-negative pathogens
 – Typical respiratory pathogens including *S. pneumoniae*, *H. influenzae*, and *M. catarrhalis*

• Higher affinity for penicillin-binding proteins (PBPs) than other β-lactams

• Low potential for resistance induction in vitro

• Excellent bactericidal activity against PRSP or MRSA / VISA in animal efficacy models
Clinically Important Pathogens

<table>
<thead>
<tr>
<th>Organism</th>
<th>Ceftaroline MIC (µg/mL)</th>
<th>No. tested</th>
<th>MIC Range</th>
<th>90%</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. pneumoniae (All)</td>
<td>894</td>
<td>≤ 0.008 – 0.5</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>S. pneumoniae (MDR)</td>
<td>125</td>
<td>0.06 – 0.5</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>S. aureus (MSSA)</td>
<td>1711</td>
<td>≤ 0.008 – 0.5</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>S. aureus (MRSA)</td>
<td>2254</td>
<td>0.12 – 2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>H. influenzae (β-lactamase-negative)</td>
<td>275</td>
<td>≤ 0.008 – 0.06</td>
<td>0.015</td>
<td></td>
</tr>
<tr>
<td>H. influenzae (β-lactamase-positive)</td>
<td>106</td>
<td>≤ 0.008 – 0.12</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>E. coli (ceftazidime-susceptible)</td>
<td>1036</td>
<td>0.015 – > 16</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>K. pneumoniae (ceftazidime-susceptible)</td>
<td>517</td>
<td>≤ 0.008 – > 16</td>
<td>0.25</td>
<td></td>
</tr>
</tbody>
</table>

2008 US Surveillance
Lower MICs than Comparators Against S. pneumoniae
US Surveillance Isolates from 2008

891 isolates

Arrows indicate MIC$_{90}$ values for each agent
High Affinity for Modified PBPs in PRSP and MRSA

Higher affinity for modified PBPs results in lower MICs

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>PRSP S. pneumoniae 2039</th>
<th>MRSA Strain 67-0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIC (µg/mL)</td>
<td>PBP2x IC$_{50}$ (µg/mL)</td>
</tr>
<tr>
<td>Ceftaroline</td>
<td>0.12</td>
<td>0.17</td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>1 – 2</td>
<td>0.64</td>
</tr>
<tr>
<td>Penicillin</td>
<td>1 – 2</td>
<td>0.79</td>
</tr>
</tbody>
</table>

Low Potential for Resistance Development In Vitro

- No MIC shifts > 2 dilutions following serial passage (10 – 50 passages)
- Low spontaneous mutation frequencies

<table>
<thead>
<tr>
<th>Organism</th>
<th>Phenotype</th>
<th>4 x MIC</th>
<th>Initial MIC (µg/mL)</th>
<th>Final MIC After 10 Passages (µg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. aureus 2202</td>
<td>CA-MRSA</td>
<td>< 1.10 x 10^{-10}</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>S. pneumoniae 0869</td>
<td>PSSP</td>
<td>< 6.80 x 10^{-9}</td>
<td>0.008</td>
<td>0.015</td>
</tr>
<tr>
<td>S. pneumoniae 0884</td>
<td>PRSP</td>
<td>< 7.14 x 10^{-9}</td>
<td>0.12</td>
<td>0.25</td>
</tr>
<tr>
<td>H. influenzae 1224</td>
<td></td>
<td>< 4.98 x 10^{-9}</td>
<td>0.06</td>
<td>0.12</td>
</tr>
<tr>
<td>H. influenzae 2797</td>
<td>BLNAR</td>
<td>< 1.43 x 10^{-9}</td>
<td>0.06</td>
<td>0.12</td>
</tr>
</tbody>
</table>

- Insignificant induction of AmpC β-lactamases at ≤ 1 x MIC among gram-negative bacilli
In Vivo Efficacy of Ceftaroline and Ceftriaxone Against *S. pneumoniae* in Rabbit Pneumonia Model

Simulated human dose regimen

MICs (µg/mL) for PSSP (0.015 vs. 0.06), PISP (0.125 vs. 1), and PRSP (0.25 vs. 4) for ceftaroline and ceftriaxone, respectively (Croisier-Bertin D et al. *19th ECCMID*, Helsinki 2009 Abstract O382).

Bacterial Counts After 2 Days of Therapy (mean log_{10} CFU/g lung tissue)

- **Control**
- **Ceftriaxone 1g/24h IV***
- **Ceftaroline 600mg/12h IV***

- **PSSP**
 - Ceftriaxone MIC = 4 µg/mL
 - Ceftaroline MIC = 0.25 µg/mL

- **PISP**
 - p < .001

- **PRSP**
 - p < .01
 - p < .001

* Simulated human dose regimen

MICs (µg/mL) for PSSP (0.015 vs. 0.06), PISP (0.125 vs. 1), and PRSP (0.25 vs. 4) for ceftaroline and ceftriaxone, respectively (Croisier-Bertin D et al. *19th ECCMID*, Helsinki 2009 Abstract O382).
Pharmacokinetics

• Rapid prodrug conversion to ceftaroline in plasma

• Approximately linear PK for doses of 50 – 1000 mg

• Half-life of 2.5 hours
 – No drug accumulation on repeated doses

• Low protein binding ~ 20%

• Low potential for drug-drug interactions
 – No CYP450-dependent metabolism
 – No inhibition or induction of CYP450 enzymes

• Elimination mainly through renal excretion
 – Dose adjustment for moderate and severe renal impairment
S. pneumoniae PK/PD

- %T>MIC is PK/PD parameter that best predicts efficacy for cephalosporins
- Murine neutropenic thigh/ bacteremia infection model standard for determining magnitude of %T>MIC
- %T>MIC predicts efficacy for ceftaroline
- ≥ 39% T>MIC required for efficacy for S. pneumoniae

PK/PD Target Attainment

Monte Carlo simulation-predicted probability (%) of target attainment for 600 mg q12h dose as function of MIC

S. pneumoniae

Organism Frequency, %

PK-PD Target Attainment, %

MIC (μg/mL)

- ≤ 0.008
- 0.015
- 0.03
- 0.06
- 0.125
- 0.25
- 0.5
- 1
- 2
- 4
- 8
- 16
- 32

* Bars represent percentage of isolates from US surveillance 2008

> 90% PTA for MIC of 1 μg/mL

> T>MIC = 39%

S. pneumoniaes
Summary

- Ceftaroline exhibits broad-spectrum antibacterial activity against important respiratory pathogens.
- Activity against resistant gram-positive bacteria mediated by high-affinity binding to modified PBPs.
- Low potential for resistance development in vitro.
- Approximately linear PK profile.
- Low potential for drug-drug interactions.
- Dosing regimen of 600 mg q12h provides adequate free-drug %T>MIC to cover key respiratory pathogens:
 - *S. pneumoniae* with MICs ≤ 0.5 µg/mL.
Interpretive Criteria Proposed by Sponsor and Agency for CABP

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Sponsor-proposed Interpretive Criteria</th>
<th>FDA-proposed Interpretive Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. aureus (excluding methicillin-resistant isolates)</td>
<td>≤ 2<sup>a</sup> — —</td>
<td>≤ 0.25 — —</td>
</tr>
<tr>
<td>S. pneumoniae</td>
<td>≤ 0.5 — —</td>
<td>≤ 0.008 — —</td>
</tr>
<tr>
<td>H. influenzae</td>
<td>≤ 0.25<sup>b</sup> — —</td>
<td>No interpretive criteria</td>
</tr>
</tbody>
</table>

^a Sponsor only proposed interpretive criteria for *S. aureus* regardless of indication

^b Sponsor proposed interpretive criteria for *Haemophilus* spp.
Interpretive Criteria

- Important in guiding physicians in selecting most appropriate agent

- Susceptible implies a high probability that patient will respond to treatment with appropriate dosage of antimicrobial agent

- Current FDA-proposed breakpoints
 - Breakpoint divides wild-type MIC distribution
 - 51% of US *S. pneumoniae* isolates nonsusceptible despite adequate exposure and good clinical efficacy
Clinical Design and Efficacy

Dirk Thye, MD
CABP – Study Designs

P903-08 and P903-09

- Phase 3, multicenter, randomized, double-blind
- Noninferiority margin (10%) in clinical response at TOC
- All subjects in Study P903-08 in both groups received 2 doses adjunctive clarithromycin (500 mg q12h) on Day 1
- IV therapy only, no oral step-down therapy

![Diagram showing study designs with Ceftaroline and Ceftriaxone](image)
CABP Definition

• New or progressive infiltrate on chest radiograph

• Acute illness (≤ 7 days) with ≥ 3 signs or symptoms
 – Fever > 38°C oral or hypothermia < 35°C
 – WBC count > 10,000 cells/mm³ or < 4,500 cells/mm³
 – > 15% bands
 – New or increased cough
 – Purulent sputum or change in sputum character
 – Auscultatory findings consistent with pneumonia
 – Dyspnea, tachypnea, or hypoxemia
Main Inclusion Criteria

- Adults aged 18 years or older
- Infection requiring treatment with IV antibiotics
- Need for hospitalization
- Only PORT Risk Class III or IV included
 - PORT I / II Low mortality, outpatient
 - PORT III / IV Moderate mortality, hospitalization
 - PORT V High mortality, ICU
Main Exclusion Criteria

• More than 1 dose of short-acting prior antibiotic

• Known or suspected ceftriaxone-resistant (eg, MRSA) or atypical pathogen

• Admission to ICU

• Healthcare- or hospital-acquired pneumonia

• Immediate life-threatening disease or evidence of significant hepatic, hematologic, or immunologic disease
Efficacy Endpoints

• **Primary Efficacy Endpoint**
 - Clinical cure rate at TOC

• **Secondary Efficacy Endpoints**
 - Clinical cure rate at EOT
 - Microbiological success rate at TOC
 - Clinical & microbiological response by pathogen at TOC
 - Relapse at LFU
 - Reinfection/ recurrence at LFU
Primary Endpoint Definitions
Determinated at TOC

• Clinical cure
 – Total resolution of all signs and symptoms of pneumonia or improvement to extent that further antimicrobial therapy not necessary

• Clinical failure (any of following):
 – Persistence, incomplete clinical resolution, or worsening in signs and symptoms of CABP that required alternative antimicrobial therapy
 – AE leading to discontinuation of study drug when subject required alternative antimicrobial therapy
 – All-cause mortality

• Indeterminate
Analysis Populations
Phase 3 CABP Studies Combined

Study P903-08 (N = 613)
- Ceftaroline = 304
- Ceftriaxone = 309

Study P903-09 (N = 627)
- Ceftaroline = 317
- Ceftriaxone = 310

- **ITT**
 - Failed evaluability criteria (eg, failed I / E, no outcome assessed, noncompliance), atypical pathogen only, or *Legionella pneumophila* infection

- **MITTE**
 - No drug received or PORT I, II, or V
 - No typical baseline pathogen, atypical pathogen only, or *Legionella pneumophila* infection

- **CE**

- **mMITTE**

- **ME**
Demographics and Baseline Characteristics

CABP Studies Combined

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>MITTE Population</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ceftarolone N = 580</td>
</tr>
<tr>
<td>Age</td>
<td></td>
</tr>
<tr>
<td>Mean years ± SD</td>
<td>60.8 ± 16.4</td>
</tr>
<tr>
<td>≥ 65 years, %</td>
<td>47.1</td>
</tr>
<tr>
<td>> 50 years, %</td>
<td>75.5</td>
</tr>
<tr>
<td>Male, %</td>
<td>62.4</td>
</tr>
<tr>
<td>PORT Risk Class, %</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>62.1</td>
</tr>
<tr>
<td>IV</td>
<td>37.9</td>
</tr>
<tr>
<td>Met modified ATS severe CAP criteria, %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>31.2</td>
</tr>
<tr>
<td>Met SIRS criteria, %</td>
<td>74.8</td>
</tr>
<tr>
<td>Bacteremia, %</td>
<td>4.0</td>
</tr>
<tr>
<td>Prior antibiotics, %*</td>
<td>40.9</td>
</tr>
</tbody>
</table>

Single dose of a short-acting antibiotic
Baseline Pathogens

Phase 3 CABP Studies Combined

<table>
<thead>
<tr>
<th>Organism</th>
<th>Ceftaroline N = 580</th>
<th>Ceftriaxone N = 573</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any pathogen</td>
<td>240 (41.4)</td>
<td>235 (41.0)</td>
</tr>
<tr>
<td>Typical</td>
<td>170 (29.3)</td>
<td>175 (30.5)</td>
</tr>
<tr>
<td>Atypical only</td>
<td>70 (12.1)</td>
<td>60 (10.5)</td>
</tr>
</tbody>
</table>
Key Baseline Pathogens
Phase 3 CABP Studies Combined

<table>
<thead>
<tr>
<th>Organism</th>
<th>mMITTE Population, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ceftaroline N = 165</td>
</tr>
<tr>
<td>S. pneumoniae</td>
<td>69 (41.8)</td>
</tr>
<tr>
<td>S. aureus</td>
<td>25 (15.2)</td>
</tr>
<tr>
<td>H. influenzae</td>
<td>20 (12.1)</td>
</tr>
<tr>
<td>H. parainfluenzae</td>
<td>17 (10.3)</td>
</tr>
<tr>
<td>K. pneumoniae</td>
<td>15 (9.1)</td>
</tr>
<tr>
<td>E. coli</td>
<td>12 (7.3)</td>
</tr>
</tbody>
</table>
Primary Endpoint

Clinical Cure at TOC

<table>
<thead>
<tr>
<th>Study/Population</th>
<th>MITTE</th>
<th>CE</th>
<th>Favors Ceftriaxone</th>
<th>Favors Ceftaroline</th>
</tr>
</thead>
<tbody>
<tr>
<td>P903-08</td>
<td>Ceftaroline</td>
<td>Ceftriaxone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MITTE</td>
<td>83.8 (244/291)</td>
<td>77.7 (233/300)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE</td>
<td>86.6 (194/224)</td>
<td>78.2 (183/234)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P903-09</td>
<td>Ceftaroline</td>
<td>Ceftriaxone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MITTE</td>
<td>81.3 (235/289)</td>
<td>75.5 (206/273)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE</td>
<td>82.1 (193/235)</td>
<td>77.2 (166/215)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMBINED</td>
<td>Ceftaroline</td>
<td>Ceftriaxone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MITTE</td>
<td>82.6 (479/580)</td>
<td>76.6 (439/573)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE</td>
<td>84.3 (387/459)</td>
<td>77.7 (349/449)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treatment Difference (%)</th>
<th>(Ceftaroline-Ceftriaxone, 95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16</td>
<td></td>
</tr>
</tbody>
</table>

*Primary Endpoint:
Clinical Cure at TOC*

- **Clinical Cure at TOC**
 - % (n/N)

- **Study/Population**
 - MITTE
 - CE

- **Favors Ceftriaxone**

- **Favors Ceftaroline**

- **Treatment Difference (%)**
 - (Ceftaroline-Ceftriaxone, 95% CI)
Clinical Cure by Pathogen

Phase 3 CABP Studies Combined

<table>
<thead>
<tr>
<th>Organism</th>
<th>mMITTE Population, n/N (%)</th>
<th>Ceftaroline N = 165</th>
<th>Ceftriaxone N = 168</th>
<th>Difference (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. pneumoniae</td>
<td></td>
<td>59/69 (85.5)</td>
<td>48/70 (68.6)</td>
<td>17.0 (2.9, 30.7)</td>
</tr>
<tr>
<td>MDRSP*</td>
<td></td>
<td>4/4 (100)</td>
<td>2/9 (22.2)</td>
<td></td>
</tr>
<tr>
<td>S. aureus</td>
<td></td>
<td>18/25 (72.0)</td>
<td>18/30 (60.0)</td>
<td>12.7 (-13.1, 36.3)</td>
</tr>
<tr>
<td>H. influenzae</td>
<td></td>
<td>17/20 (85.0)</td>
<td>20/24 (83.3)</td>
<td>1.7</td>
</tr>
<tr>
<td>H. parainfluenzae</td>
<td></td>
<td>16/17 (94.1)</td>
<td>15/18 (83.3)</td>
<td>10.8</td>
</tr>
<tr>
<td>K. pneumoniae</td>
<td></td>
<td>14/15 (93.3)</td>
<td>10/13 (76.9)</td>
<td>16.4</td>
</tr>
<tr>
<td>E. coli</td>
<td></td>
<td>10/12 (83.3)</td>
<td>9/13 (69.2)</td>
<td>14.1</td>
</tr>
</tbody>
</table>

* MDRSP = multidrug resistant *S. pneumoniae*, resistant to ≥ 2 classes of antibiotics
Clinical Cure by Subgroup
Phase 3 CABP Studies Combined

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>CE Population % (n/N)</th>
<th>Favors Ceftriaxone</th>
<th>Favors Ceftaroline</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ceftaroline N = 459</td>
<td>Ceftriaxone N = 449</td>
<td></td>
</tr>
<tr>
<td>PORT Risk Class</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>86.8 (249/287)</td>
<td>79.2 (217/274)</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>80.2 (138/172)</td>
<td>75.4 (132/175)</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 50</td>
<td>85.6 (83/97)</td>
<td>72.4 (71/98)</td>
<td></td>
</tr>
<tr>
<td>> 50</td>
<td>84.0 (304/362)</td>
<td>79.2 (278/351)</td>
<td></td>
</tr>
<tr>
<td>Bacteremia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>84.9 (372/438)</td>
<td>78.5 (339/432)</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>71.4 (15/21)</td>
<td>58.8 (10/17)</td>
<td></td>
</tr>
<tr>
<td>Prior antibiotics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes*</td>
<td>82.2 (152/185)</td>
<td>81.4 (158/194)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>85.8 (235/274)</td>
<td>74.9 (191/255)</td>
<td></td>
</tr>
</tbody>
</table>

Shaded area = High risk of mortality subgroups

* No more than 1 dose of short-acting antibiotic
FDA-defined Exploratory Primary Analysis
FDA-mITT Population

- **Subjects with ≥ 1 acceptable pathogen**
 - Isolated from blood, pleural fluid, BAL
 - Isolated from adequate sputum specimen (≤ 10 squamous epithelial cells/LPF and > 10 WBC/LPF)
 - Positive urinary antigen test for *S. pneumoniae*
 - Specific gram-negative rods and only if ≥ PORT III and isolate from appropriate sample

- **Subjects with *H. parainfluenzae* excluded**

- **Subjects with sole atypical pathogens**
 - *(L. pneumophila, M. pneumoniae, or C. pneumoniae)* excluded
FDA-defined Exploratory Primary Analysis
Clinical Responder at Study Day 4

• Clinically stable
 – Temperature $\leq 37.8^\circ$C
 – Heart rate ≤ 100 bpm
 – Respiratory rate ≤ 24 breaths per min
 – SBP ≥ 90 mmHg
 – Oxygen saturation $\geq 90\%$
 – Confusion/ disorientation absent

AND

• Symptoms criteria success (compared to baseline)
 – None of 4 symptoms (cough, dyspnea, chest pain, sputum production) worsening
 – ≥ 1 symptom improving
FDA-defined Exploratory Primary Analysis

Clinical Responders at Study Day 4

<table>
<thead>
<tr>
<th>Study</th>
<th>FDA-mMITT Population % (n/N)</th>
<th>Favors Ceftriaxone</th>
<th>Favors Ceftaroline</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ceftaroline</td>
<td>Ceftriaxone</td>
<td></td>
</tr>
<tr>
<td>P903-08</td>
<td>71.0 (49/69)</td>
<td>56.9 (41/72)</td>
<td></td>
</tr>
<tr>
<td>P903-09</td>
<td>69.5 (57/82)</td>
<td>60.5 (49/81)</td>
<td></td>
</tr>
<tr>
<td>COMBINED</td>
<td>70.2 (106/151)</td>
<td>58.8 (90/153)</td>
<td></td>
</tr>
</tbody>
</table>

Treatment Difference (%)

(Ceftaroline-Ceftriaxone, 95% CI)

-32 -28 -24 -20 -16 -12 -8 -4 0 4 8 12 16 20 24 28 32
CABP Efficacy Conclusions

- Ceftaroline efficacious for treatment of CABP
 - Pre-specified, traditional primary endpoint (TOC)
 - Exploratory, FDA-defined early time point (Day 4)
 - Secondary and subgroup analyses provide robust support

- Efficacy demonstrated against important pathogens
 - *S. pneumoniae*
 - *S. aureus*
 - *H. influenzae*

- Totality of data demonstrates trends favoring ceftaroline over ceftriaxone for treatment of CABP
Clinical Safety

David Friedland, MD
Vice President, Clinical Sciences
Cerexa, Inc.
Safety Population

All Clinical Studies

<table>
<thead>
<tr>
<th>Study Grouping</th>
<th>Ceftarolone</th>
<th>Comparator</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical Pharmacology</td>
<td>275</td>
<td>84</td>
<td>305*</td>
</tr>
<tr>
<td>Combined Phase 2 Studies</td>
<td>165</td>
<td>77</td>
<td>242</td>
</tr>
<tr>
<td>Total Phase 3 CABP and cSSSI Studies</td>
<td>1305</td>
<td>1301</td>
<td>2606</td>
</tr>
<tr>
<td>Combined Phase 3 CABP Studies</td>
<td>613</td>
<td>615</td>
<td>1228</td>
</tr>
<tr>
<td>Combined Phase 3 cSSSI Studies</td>
<td>692</td>
<td>686</td>
<td>1378</td>
</tr>
<tr>
<td>Total All Studies</td>
<td>1745</td>
<td>1462</td>
<td>3153</td>
</tr>
</tbody>
</table>

* 54 subjects in the TQT crossover study are counted only once in the total column.
Adverse Event Overview

Phase 3 CABP Studies

<table>
<thead>
<tr>
<th>Safety Event</th>
<th>Ceftaroline (N = 613)</th>
<th>Ceftriaxone (N = 615)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any TEAE</td>
<td>47.0</td>
<td>45.7</td>
</tr>
<tr>
<td>Any SAE</td>
<td>11.3</td>
<td>11.7</td>
</tr>
<tr>
<td>Discontinuations due to TEAE</td>
<td>4.4</td>
<td>4.1</td>
</tr>
<tr>
<td>Death</td>
<td>2.4</td>
<td>2.0</td>
</tr>
</tbody>
</table>
Adverse Events ≥ 2% in Ceftaroline Group
Phase 3 CABP Studies

<table>
<thead>
<tr>
<th>Safety Event</th>
<th>Safety Population, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ceftaroline N = 613</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>4.2</td>
</tr>
<tr>
<td>Headache</td>
<td>3.4</td>
</tr>
<tr>
<td>Insomnia</td>
<td>3.1</td>
</tr>
<tr>
<td>Phlebitis</td>
<td>2.8</td>
</tr>
<tr>
<td>Hypertension</td>
<td>2.3</td>
</tr>
<tr>
<td>Hypokalemia</td>
<td>2.3</td>
</tr>
<tr>
<td>Nausea</td>
<td>2.3</td>
</tr>
</tbody>
</table>
Serious Adverse Events

Phase 3 CABP Studies

<table>
<thead>
<tr>
<th>Safety Event</th>
<th>Safety Population, %</th>
</tr>
</thead>
</table>
| | Ceftaroline N = 613 | Ceftriaxone N = 615
| Pneumonia | 1.5 | 1.5
| Pleural effusion | 0.8 | 1.0
| Pulmonary embolism | 0.8 | 0.7
| COPD | 0.7 | 1.0
| Respiratory failure | 0.7 | 0.2
| Pyothorax | 0.7 | 0.0
| Lung abscess | 0.3 | 0.7

Adverse Events Leading to Discontinuation of Study Drug or Study
Phase 3 CABP Studies

• Low and similar incidences
 – 4.4% ceftaroline vs 4.1% ceftriaxone

• Few assessed as study drug related
 – 0.8% ceftaroline vs 1.0% ceftriaxone

• No individual AE leading to discontinuation in > 2 ceftaroline subjects
Summary of Deaths

Phase 3 CABP Studies

- Number of deaths low and similar between groups
 - 15 subjects (ceftaroline) vs 12 subjects (ceftriaxone)
 - Potentially drug-related equal (1 subject each group)
 - Primary infection-related similar (2 vs 3 subjects)

- Additional 5 deaths after LFU (1 vs 4 subjects)

- No predominant cause of death identified

- Timing of deaths
 - Few deaths while on therapy (2 vs 4 subjects)
 - Day 14 mortality similar (6 vs 7 subjects)
 - Day 30 mortality equal (12 subjects each group)
Organ Systems or Events of Interest Relevant to Cephalosporin Class

Combined CABP and cSSSI Phase 3 Safety Data

Comparator Agents: ceftriaxone (CABP)
vancomycin + aztreonam (cSSSI)
Summary of Organ Systems
Pooled Phase 3 CABP and cSSSI Studies

• Similar renal safety
 – TEAEs of potential renal impairment (1.5% vs 0.8%)
 – PCS Cr increase (1.4% vs 1.9%)
 – PCS CrCl decrease (0.7% vs 1.3%)

• Similar hematological safety
 – Increased Coombs seroconversion (10.7% vs 4.4%)
 – TEAEs of potential drug-induced anemia (1.2% vs 1.3%)
 – No hemolytic anemia or other hematological signals

• No evidence of cardiac toxicity
 – No cardiac signal (TEAEs and ECGs) in Phase 3 studies
 – No QT prolongation (supratherapeutic dose)

• Similar hepatic safety
 – TEAEs of potential hepatic toxicity (2.5% vs 3.6%)
 – No ceftaroline-treated subject met Hy’s Law
Events of Interest Relevant to Cephalosporin Class
Pooled Phase 3 CABP and cSSSI Studies

- **Seizures were uncommon (2 vs 1 subjects)**
 - None related to study drug

- **Lower incidence of potential allergic reactions**
 - TEAEs of potential allergic reactions (5.4% vs 8.5%)
 - Serious/ severe TEAEs (3 vs 6 subjects)

- **Similar incidence of antibiotic-associated diarrhea**
 - TEAEs of potential antibiotic-associated diarrhea (4.5% vs 3.2%)
 - *C. difficile*-associated diarrhea uncommon (2 vs 1 subjects)
Safety Conclusions

• Safety results similar between ceftaroline and ceftriaxone including:
 – TEAEs
 – SAEs
 – Discontinuations due to AE
 – Deaths

• No safety signal identified by Organ System or safety events of interest review

• Ceftaroline well tolerated and safety profile reflective of cephalosporin class
Ceftaroline in CABP
Therapeutic Perspective

Donald E. Low, MD, FRCPC
Ceftaroline Meets Urgent Medical Needs

- Broad spectrum of activity against gram-positives and gram-negatives
- Potent activity and proven effectiveness for treatment of CABP
- Treatment advantage over ceftriaxone for CABP including *S. pneumoniae* and *S. aureus*
- Good safety profile consistent with cephalosporin class
- Ceftaroline represents significant advancement in antibiotic treatment of CABP
Where Would I Use Ceftaroline

• **First-line empiric therapy for patients with moderate to severe CABP requiring hospitalization**

• **Alternative therapy for patients having failed on other antibiotics**
Anti-infective Drugs Advisory Committee (cSSSI)

Ceftaroline fosamil

Cerexa, Inc.
A subsidiary of Forest Laboratories, Inc.

07 September 2010
Proposed Indications

- Ceftaroline is indicated for patients with cSSSI caused by susceptible isolates of gram-positive and gram-negative microorganisms
 - *S. aureus* (including MSSA and MRSA)
 - *S. pyogenes, S. agalactiae, S. dysgalactiae, S. anginosus* group
 - *E. coli* (ceftazidime-susceptible)
 - *K. pneumoniae, K. oxytoea* (ceftazidime-susceptible)
 - *M. morganii* (ceftazidime-susceptible)

- Proposed dose
 - 600 mg q12h IV over 1 hour
 - 400 mg q12h IV over 1 hour for subjects with moderate to severe renal impairment (CrCl < 50mL/min)
Agenda

<table>
<thead>
<tr>
<th>Introduction</th>
<th>Dirk Thye, MD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>President – Cerexa, Inc.</td>
</tr>
<tr>
<td>ABSSSI: New Challenges in Treatment</td>
<td>G. Ralph Corey, MD</td>
</tr>
<tr>
<td></td>
<td>Professor of Medicine</td>
</tr>
<tr>
<td></td>
<td>Duke Clinical Research Institute</td>
</tr>
<tr>
<td>Microbiology</td>
<td>Ian Critchley, PhD</td>
</tr>
<tr>
<td></td>
<td>Vice President, Microbiology</td>
</tr>
<tr>
<td></td>
<td>Cerexa, Inc.</td>
</tr>
<tr>
<td>Clinical Design and Efficacy</td>
<td>Dirk Thye, MD</td>
</tr>
<tr>
<td>Clinical Safety</td>
<td>David Friedland, MD</td>
</tr>
<tr>
<td></td>
<td>Vice President, Clinical Sciences</td>
</tr>
<tr>
<td></td>
<td>Cerexa, Inc.</td>
</tr>
<tr>
<td>ABSSSI Therapeutic Perspective</td>
<td>G. Ralph Corey, MD</td>
</tr>
</tbody>
</table>
Financial Disclosure for External Consultants

- All have been paid (directly or through their employer) for their time and travel
- None own stock in Forest Laboratories, Inc.
- Dr. Corey is a Cerexa consultant for ceftaroline clinical trials
- Dr. Ambrose is a Cerexa consultant and current SGE serving as temporary member of Anti-infective Advisory Committee, and here today with Agency approval
ABSSSI (cSSSI)
New Challenges in Treatment

G. Ralph Corey, MD
Professor of Medicine
Duke Clinical Research Institute
The Ongoing Epidemic of MRSA-induced ABSSSI

- 14 million medical visits annually
 - 600,000 hospitalizations each year

- Most caused by *S. aureus* USA300
 - Reproduces every 30 mins (1 to 1 trillion in 20 hrs)
 - Genetically promiscuous and acquisitive
 - Resulting increase in virulence/ resistance

Hersh et al. 2008; DeFrances et al. 2008.
MRSA among 422 ED Patients with ABSSSI
August 2004

ABSSSI Includes Primarily Moderate Infections
However, Occasionally Moderate Infections Develop Severe, Life-threatening Complications
Vancomycin: The Gold Standard for Rx of MRSA

- A large hydrophilic molecule
 - Slowly bactericidal
 - Poor tissue penetration

- Increasing resistance with worsening outcomes
 - VISA (1996), hVISA (1997), VRSA (2002), ↑MICs

- Increasing nephrotoxicity with high serum levels
 - 22% with levels > 20 μg/L

Clearly new antibiotics are needed to treat infections caused by a resistant, evolving *Staphylococcus aureus*
Microbiology

Ian Critchley, PhD

Vice President, Microbiology
Cerexa, Inc.
Broad Spectrum Activity vs Clinically Important Gram-positive Cocci and Gram-negative Pathogens

<table>
<thead>
<tr>
<th>Organism</th>
<th>Ceftaroline MIC (µg/mL)</th>
<th>No. tested</th>
<th>MIC Range</th>
<th>90%</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. aureus (MSSA)</td>
<td></td>
<td>1711</td>
<td>≤ 0.008 – 0.5</td>
<td>0.25</td>
</tr>
<tr>
<td>S. aureus (MRSA)</td>
<td></td>
<td>2254</td>
<td>0.12 – 2</td>
<td>1</td>
</tr>
<tr>
<td>S. pyogenes</td>
<td></td>
<td>132</td>
<td>≤ 0.008 – 0.015</td>
<td>≤ 0.008</td>
</tr>
<tr>
<td>S. agalactiae</td>
<td></td>
<td>157</td>
<td>≤ 0.008 – 0.03</td>
<td>0.015</td>
</tr>
<tr>
<td>S. dysgalactiae</td>
<td></td>
<td>12</td>
<td>≤ 0.008 – 0.03</td>
<td>0.015</td>
</tr>
<tr>
<td>Viridans group streptococci</td>
<td></td>
<td>110</td>
<td>≤ 0.008 – 1</td>
<td>0.12</td>
</tr>
<tr>
<td>E. coli (ceftazidime-susceptible)</td>
<td></td>
<td>1036</td>
<td>0.015 – > 16</td>
<td>0.5</td>
</tr>
<tr>
<td>K. pneumoniae (ceftazidime-susceptible)</td>
<td></td>
<td>517</td>
<td>≤ 0.008 – > 16</td>
<td>0.25</td>
</tr>
</tbody>
</table>

2008 US Surveillance
Activities of Ceftaroline, Vancomycin and Linezolid Against 2008 US Surveillance Isolates of S. aureus

3965 isolates

Arrows indicate MIC$_{90}$ values for each agent
Data from 2008 US Surveillance, JMI Laboratories
Active Against Contemporary Resistant Phenotypes of *S. aureus*

<table>
<thead>
<tr>
<th>Antimicrobial Agent</th>
<th>CA-MRSA (n = 92)</th>
<th>VISA (n = 23)</th>
<th>VRSA (n = 10)</th>
<th>DAP-NS (n = 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIC<sub>90</sub></td>
<td>MIC<sub>90</sub></td>
<td>MIC Range</td>
<td>MIC Range</td>
</tr>
<tr>
<td>Ceftaroline</td>
<td>1</td>
<td>1</td>
<td>0.12 – 1</td>
<td>0.25 – 1</td>
</tr>
<tr>
<td>Vancomycin</td>
<td>1</td>
<td>8</td>
<td>32 – > 64</td>
<td>1 – 2</td>
</tr>
<tr>
<td>Daptomycin</td>
<td>1</td>
<td>4</td>
<td>0.5 – 1</td>
<td>4</td>
</tr>
<tr>
<td>Linezolid</td>
<td>2</td>
<td>2</td>
<td>1 – 4</td>
<td>1 – 2</td>
</tr>
</tbody>
</table>

High Affinity for Modified PBP2a in MRSA

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>MIC (μg/mL)</th>
<th>PBP2a IC₅₀ (μg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceftaroline</td>
<td>0.5 – 1</td>
<td>0.16</td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>> 128</td>
<td>677</td>
</tr>
<tr>
<td>Oxacillin</td>
<td>128</td>
<td>408</td>
</tr>
</tbody>
</table>

Ceftaroline Resistance Development for cSSSI Pathogens During Serial Passage

- No MIC shifts > 2 dilutions following 50 serial passages

<table>
<thead>
<tr>
<th>Organism</th>
<th>Phenotype</th>
<th>Ceftaroline MIC (µg/mL)</th>
<th>Initial MIC</th>
<th>MIC After 50 passages</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. aureus 1449</td>
<td>CA-MRSA</td>
<td></td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>S. aureus 873</td>
<td>hVISA</td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>S. aureus 555</td>
<td>VISA (DAP-NS)</td>
<td></td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>S. aureus 543</td>
<td>MSSA</td>
<td></td>
<td>0.25</td>
<td>1</td>
</tr>
<tr>
<td>S. pyogenes 2132</td>
<td>Macrolide-S</td>
<td></td>
<td>0.004</td>
<td>0.004</td>
</tr>
<tr>
<td>S. pyogenes 2368</td>
<td>Macrolide-R</td>
<td></td>
<td>0.004</td>
<td>0.004</td>
</tr>
<tr>
<td>S. pyogenes 1077</td>
<td>Macrolide-R</td>
<td></td>
<td>0.004</td>
<td>0.004</td>
</tr>
</tbody>
</table>
Efficacy of Ceftaroline and Comparators Against *S. aureus* in Rabbit Endocarditis Model

Simulated Human Dosing

MRSA

- Control
- Linezolid
- Vancomycin
- CEFTAROLINE (MIC = 1 µg/mL)

hVISA

- Control
- Linezolid
- Vancomycin
- CEFTAROLINE (MIC = 2 µg/mL)

* p ≤ 0.001 versus control and linezolid

** p ≤ 0.001 versus control, linezolid, and vancomycin
S. aureus PK/PD

- %T>MIC is PK/PD parameter that best predicts efficacy for cephalosporins

- Murine neutropenic thigh/ bacteremia infection model standard for determining magnitude of %T>MIC

- %T>MIC predicts efficacy for ceftaroline

- ≥ 26% T>MIC required for efficacy for S. aureus

PK/PD Target Attainment

Monte Carlo simulation-predicted probability (%) of target attainment for the 600 mg q12h dose as a function of MIC

S. aureus

MIC (µg/mL)

Organism Frequency, %

PK-PD Target Attainment, %

0 10 20 30 40 50 60 70 80 90 100

≤ 0.008 0.015 0.03 0.06 0.125 0.25 0.5 1 2 4 8 16 32

> 90% PTA for MIC of 2 µg/mL

* Bars represent percentage of isolates from US surveillance 2008

* MRSA*

* MSSA*

T>MIC = 26%
Interpretive Criteria Proposed by Sponsor and Agency for *S. aureus*

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Sponsor-proposed Interpretive Criteria</th>
<th>FDA-proposed Interpretive Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S</td>
<td>I</td>
</tr>
<tr>
<td>S. aureus (includes methicillin-resistant isolates)</td>
<td>≤ 2</td>
<td>—</td>
</tr>
</tbody>
</table>
Summary

- Ceftaroline exhibits broad-spectrum antibacterial activity against important skin pathogens
- Activity against resistant gram-positive bacteria mediated by high-affinity binding to modified PBPs
- Low potential for resistance development in vitro
- Dosing regimen of 600 mg q12h provides adequate free-drug %T>MIC to cover key skin pathogens
- Data support breakpoint of ≤ 2 μg/mL for *S. aureus*
Clinical Design and Efficacy

Dirk Thye, MD

Cerexa, Inc.
cSSSI – Study Design

- Phase 3, multinational, randomized, double-blind
- Noninferiority margin (10%) in clinical response at TOC
- IV therapy only, no oral step-down therapy

Flowchart

- **Baseline Assessment**: -24h
- **5-14 days of therapy**
 - IV Ceftaroline 600 mg q12h
 - IV Vancomycin 1 g q12h plus IV aztreonam 1 g q12h
- **EOT**
- **TOC**: 8-15 days after EOT
- **LFU**: 21-35 days after EOT
cSSSI Definition

• Involving deep soft tissue or requiring significant surgical intervention
 – Major abscess required ≥ 2 cm of cellulitis extending from abscess margin

 OR

Involving cellulitis/abscess of lower extremity in subjects with DM or PVD

• In addition: ≥ 3 clinical signs and symptoms
 – Fever > 38°C oral or hypothermia < 35°C
 – WBC count > 10,000/mm³
 – > 10% bands
 – Purulent or seropurulent drainage
 – Erythema
 – Fluctuance
 – Heat
 – Pain or tenderness to palpation
Main Inclusion Criteria

- Adults aged 18 years or older
- Need for hospitalization or treatment in emergency room or urgent care setting
- Expected to require ≥ 5 days of IV antimicrobial therapy
Main Exclusion Criteria

- > 24 hours of prior antibiotics for treatment of current cSSSI
 - Unless treatment failure with microbiological persistence

- Decubitus ulcers and diabetic foot ulcers involving osteomyelitis or requiring surgery

- Necrotizing fasciitis or gangrene

- Immediate life-threatening disease or evidence of significant hepatic, hematologic, or immunologic disease
Efficacy Endpoints

• **Primary Efficacy Endpoint**
 - Clinical cure rate at TOC in MITT and CE Populations

• **Secondary Efficacy Endpoints**
 - Clinical cure rate at EOT
 - Microbiological success rate at TOC
 - Clinical and microbiological response by pathogen at TOC
 - Relapse at LFU
 - Reinfection / recurrence at LFU
Primary Endpoint Definitions

Determined at TOC

- **Clinical cure**
 - Total resolution of signs and symptoms or improvement to extent that further antibiotics not necessary

- **Clinical failure (any of the following)**
 - Persistence, incomplete resolution, or worsening that requires alternative antibiotics
 - Surgical intervention due to failure of study drug
 - New signs and symptoms at infection site
 - AE leading to study drug discontinuation when subject required alternative antimicrobial therapy
 - Death wherein cSSSI considered causative

- **Indeterminate**
Analysis Populations

Phase 3 cSSSI Studies Combined

- **Study P903-06 (N = 702)**
 - Ceftaroline = 353
 - Vanco/Az = 349

- **Study P903-07 (N = 694)**
 - Ceftaroline = 348
 - Vanco/Az = 346

- **ITT**
 - Failed evaluability criteria (e.g., failed I/E, no outcome assessed, non-compliance)
 - No drug received

- **MITT**
 - No baseline pathogen

- **CE**

- **mMITT**

- **ME**
Demographics and Baseline Characteristics

Phase 3 cSSSI Studies Combined

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>MITT Population</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ceftaroline N = 693</td>
<td>Vanco/Az N = 685</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mean years ± SD</td>
<td>47.5 ± 17.0</td>
<td>48.4 ± 16.6</td>
<td></td>
</tr>
<tr>
<td>≥ 65 years, %</td>
<td>17.3</td>
<td>19.0</td>
<td></td>
</tr>
<tr>
<td>Male, %</td>
<td>64.1</td>
<td>61.2</td>
<td></td>
</tr>
<tr>
<td>BMI, mean kg/m² ± SD</td>
<td>28.4 ± 7.1</td>
<td>28.7 ± 7.0</td>
<td></td>
</tr>
<tr>
<td>Diabetes, %</td>
<td>17.6</td>
<td>17.5</td>
<td></td>
</tr>
<tr>
<td>PVD, %</td>
<td>13.4</td>
<td>13.6</td>
<td></td>
</tr>
<tr>
<td>Bacteremia, %</td>
<td>4.2</td>
<td>3.8</td>
<td></td>
</tr>
</tbody>
</table>
Baseline Infection Type: Wound, Abscess, Cellulitis

Individual Phase 3 cSSSI Studies (MITT)

Study P903-06

- Cellulitis: 40%
- Abscess: 14%
- Infected wound: 14%
- Infected ulcer: 8%
- Infected burn: 2%
- Infected bite: <1%
- Other: 6%
- Total: 100%

Study P903-07

- Cellulitis: 36%
- Abscess: 13%
- Infected wound: 8%
- Infected ulcer: 2%
- Infected burn: 1%
- Infected bite: <1%
- Other: 6%
- Total: 100%
Key Baseline Pathogens

Phase 3 cSSSI Studies Combined

<table>
<thead>
<tr>
<th>Organism</th>
<th>Ceftaroline N = 540</th>
<th>Vanco/Az N = 522</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. aureus</td>
<td>425 (78.7)</td>
<td>409 (78.4)</td>
</tr>
<tr>
<td>MSSA</td>
<td>245 (45.4)</td>
<td>258 (49.4)</td>
</tr>
<tr>
<td>MRSA</td>
<td>179 (33.1)</td>
<td>151 (28.9)</td>
</tr>
<tr>
<td>S. pyogenes</td>
<td>63 (11.7)</td>
<td>62 (11.9)</td>
</tr>
<tr>
<td>S. agalactiae</td>
<td>27 (5.0)</td>
<td>21 (4.0)</td>
</tr>
<tr>
<td>E. coli</td>
<td>23 (4.3)</td>
<td>21 (4.0)</td>
</tr>
<tr>
<td>K. pneumoniae</td>
<td>18 (3.3)</td>
<td>19 (3.6)</td>
</tr>
<tr>
<td>S. anginosus group</td>
<td>15 (2.8)</td>
<td>18 (3.4)</td>
</tr>
<tr>
<td>S. dysgalactiae</td>
<td>14 (2.6)</td>
<td>17 (3.3)</td>
</tr>
<tr>
<td>K. oxytoca</td>
<td>12 (2.2)</td>
<td>8 (1.5)</td>
</tr>
<tr>
<td>M. morganii</td>
<td>12 (2.2)</td>
<td>7 (1.3)</td>
</tr>
</tbody>
</table>
Primary Endpoint Analysis

Clinical Cure at TOC

<table>
<thead>
<tr>
<th>Study/Population</th>
<th>Ceftaroline</th>
<th>Vanco/Az</th>
<th>Favors Vanco/Az</th>
<th>Favors Ceftaroline</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE</td>
<td>86.6% (304/351)</td>
<td>85.6% (297/347)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MITT</td>
<td>91.1% (288/316)</td>
<td>93.3% (280/300)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P903-06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE</td>
<td>85.1% (291/342)</td>
<td>85.5% (289/338)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MITT</td>
<td>92.2% (271/294)</td>
<td>92.1% (269/292)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P903-07</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMBINED</td>
<td>85.9% (595/693)</td>
<td>85.5% (586/685)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE</td>
<td>91.6% (559/610)</td>
<td>92.7% (549/592)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Treatment Difference (%)

(Ceftaroline-Vanco/Az., 95% CI)
Clinical Cure by Pathogen
Phase 3 cSSSI Studies Combined

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>mMITT Population, n/N (%)</th>
<th>Difference (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ceftaroline N = 540</td>
<td>Vanco/Az N = 522</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Difference</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(95% CI)</td>
</tr>
<tr>
<td>S. aureus</td>
<td>377/425 (88.7)</td>
<td>356/409 (87.0)</td>
</tr>
<tr>
<td>MSSA</td>
<td>221/245 (90.2)</td>
<td>233/258 (90.3)</td>
</tr>
<tr>
<td>MRSA</td>
<td>155/179 (86.6)</td>
<td>124/151 (82.1)</td>
</tr>
<tr>
<td>S. pyogenes</td>
<td>56/63 (88.9)</td>
<td>57/62 (91.9)</td>
</tr>
</tbody>
</table>
Clinical Cure by Pathogen (cont’d)
Phase 3 cSSSI Studies Combined

<table>
<thead>
<tr>
<th>Organism</th>
<th>mMITT Population, n/N (%)</th>
<th>Ceftaroline N = 540</th>
<th>Vanco/Az N = 522</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. agalactiae</td>
<td></td>
<td>25/27 (92.6)</td>
<td>19/21 (90.5)</td>
</tr>
<tr>
<td>E. coli</td>
<td></td>
<td>21/23 (91.3)</td>
<td>19/21 (90.5)</td>
</tr>
<tr>
<td>K. pneumoniae</td>
<td></td>
<td>17/18 (94.4)</td>
<td>14/19 (73.7)</td>
</tr>
<tr>
<td>S. anginosus group</td>
<td></td>
<td>12/15 (80.0)</td>
<td>16/18 (88.9)</td>
</tr>
<tr>
<td>S. dysgalactiae</td>
<td></td>
<td>14/14 (100.0)</td>
<td>15/17 (88.2)</td>
</tr>
<tr>
<td>K. oxytoca</td>
<td></td>
<td>10/12 (83.3)</td>
<td>7/8 (87.5)</td>
</tr>
<tr>
<td>M. morganii</td>
<td></td>
<td>11/12 (91.7)</td>
<td>5/7 (71.4)</td>
</tr>
</tbody>
</table>
FDA-defined Exploratory Primary Analysis

Clinical Response at Study Day 3

- **FDA-MITT Population**
 - Lesion size $\geq 75 \text{ cm}^2$
 - Infection type:
 - Infected wound
 - Major abscess (surrounding erythema $\geq 5 \text{ cm}$)
 - Deep/ extensive cellulitis
 - Lower extremity SSSI in subjects with DM or PVD

- **Clinical responders**
 - Cessation of lesion spread at Day 3 (based on both length and width compared to baseline)
 - Afebrile at Day 3 ($\leq 37.6^{\circ}\text{C}$)

AND
FDA-defined Exploratory Primary Analysis

Clinical Responders at Study Day 3

<table>
<thead>
<tr>
<th>Study</th>
<th>FDA-MITT Population</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ceftaroline (%)</td>
<td>Vanco/Az (%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(n/N)</td>
<td>(n/N)</td>
<td></td>
</tr>
<tr>
<td>P903-06</td>
<td>74.0% (148/200)</td>
<td>64.6% (135/209)</td>
<td></td>
</tr>
<tr>
<td>P903-07</td>
<td>74.0% (148/200)</td>
<td>68.1% (128/188)</td>
<td></td>
</tr>
<tr>
<td>COMBINED</td>
<td>74.0% (296/400)</td>
<td>66.2% (263/397)</td>
<td></td>
</tr>
</tbody>
</table>

Favors

- **Vanco/Az**
- **Ceftaroline**

Treatment Difference (%)

(Ceftaroline-Ceftriaxone, 95% CI)
cSSSI Efficacy Conclusions

- Ceftaroline noninferior to vancomycin + aztreonam for treatment of cSSSI
 - Pre-specified, traditional primary endpoint (TOC)
 - Exploratory, FDA-defined early time point (Day 3)
 - Secondary and subgroup analyses supportive

- Efficacy demonstrated against important pathogens
 - *S. aureus*, including MRSA
 - *S. pyogenes* and other *Streptococcus* spp.
 - *Enterobacteriaceae*

- Totality of data provides robust evidence for the effectiveness of ceftaroline for treatment of cSSSI
Clinical Safety

David Friedland, MD

Vice President, Clinical Sciences
Cerexa, Inc.
Safety Population

All Clinical Studies

<table>
<thead>
<tr>
<th>Study Grouping</th>
<th>Ceftaroline</th>
<th>Comparator</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical Pharmacology</td>
<td>275</td>
<td>84</td>
<td>305*</td>
</tr>
<tr>
<td>Combined Phase 2 Studies</td>
<td>165</td>
<td>77</td>
<td>242</td>
</tr>
<tr>
<td>Total Phase 3 CABP and cSSSI Studies</td>
<td>1305</td>
<td>1301</td>
<td>2606</td>
</tr>
<tr>
<td>Combined Phase 3 CABP Studies</td>
<td>613</td>
<td>615</td>
<td>1228</td>
</tr>
<tr>
<td>Combined Phase 3 cSSSI Studies</td>
<td>692</td>
<td>686</td>
<td>1378</td>
</tr>
<tr>
<td>Total All Studies</td>
<td>1745</td>
<td>1462</td>
<td>3153</td>
</tr>
</tbody>
</table>

* 54 subjects in the TQT crossover study are counted only once in the total column
Adverse Event Overview

Phase 3 cSSSI Studies

<table>
<thead>
<tr>
<th>Safety Event</th>
<th>Safety Population, %</th>
<th>Ceftaroline N = 692</th>
<th>Vancomycin + Aztreonam N = 686</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any TEAE</td>
<td>44.7</td>
<td>47.5</td>
<td></td>
</tr>
<tr>
<td>Any SAE</td>
<td>4.3</td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td>Discontinuations Due to TEAE</td>
<td>3.0</td>
<td>4.8</td>
<td></td>
</tr>
<tr>
<td>Death</td>
<td>0.4</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Adverse Events ≥ 2% in Ceftaroline Subjects

Phase 3 cSSSI Studies

<table>
<thead>
<tr>
<th>Safety Event</th>
<th>Safety Population, %</th>
<th>Ceftaroline N = 692</th>
<th>Vancomycin + Aztreonam N = 686</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nausea</td>
<td>5.9</td>
<td>5.1</td>
<td></td>
</tr>
<tr>
<td>Headache</td>
<td>5.2</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>Diarrhea</td>
<td>4.9</td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td>Pruritus</td>
<td>3.5</td>
<td>8.2</td>
<td></td>
</tr>
<tr>
<td>Rash</td>
<td>3.2</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>Vomiting</td>
<td>2.9</td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td>Constipation</td>
<td>2.6</td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td>Insomnia</td>
<td>2.5</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>Pruritus generalized</td>
<td>2.2</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>Dizziness</td>
<td>2.0</td>
<td>1.2</td>
<td></td>
</tr>
</tbody>
</table>
Serious Adverse Events
Phase 3 cSSSI Studies

- **Low and similar incidence**
 - 4.3% ceftarolone vs 4.1% vancomycin + aztreonam

- **Few were assessed as study drug related**
 - 0.6% ceftarolone vs 0.4% vancomycin + aztreonam

- **No individual SAE occurred in > 2 ceftarolone subjects**
AEs Leading to Discontinuation of Study Drug or Study
Phase 3 cSSSI Studies

- **Low and similar incidence**
 - 3.0% ceftaroline vs 4.8% vancomycin + aztreonam

- **Skin and Subcutaneous Tissue Disorders was only body system with incidence > 1%**
 - 1.2% ceftaroline vs 2.5% vancomycin + aztreonam

- **Only AE leading to discontinuation in > 2 subjects in ceftaroline group was hypersensitivity**
 - 0.4% ceftaroline vs 0.9% vancomycin + aztreonam
Summary of Deaths
Phase 3 cSSSI Studies

• 3 deaths prior to LFU visit
 – 3 ceftaroline vs 0 vancomycin + aztreonam
 – None study drug related
 – Due to underlying disease:
 • Single cases of: respiratory failure; neoplasm progression; cardiopulmonary failure
 – Deaths occurred between 3 and 23 days after EOT

• Additional 4 deaths after LFU visit
 – 2 ceftaroline vs 2 vancomycin + aztreonam
 – None study drug related
Safety Conclusions

Phase 3 cSSSI Studies

- Safety results similar between ceftaroline and vancomycin + aztreonam including:
 - TEAEs
 - SAEs
 - Discontinuations due to AE
 - Deaths

- No safety signal identified by review of Organ System or safety events of interest

- Ceftaroline well tolerated and safety profile reflective of cephalosporin class
Ceftarolene in ABSSSI
Therapeutic Perspective

G. Ralph Corey, MD
Professor of Medicine
Duke Clinical Research Institute
Ceftaroline Characteristics

• Demonstrated Efficacy
 – Against wide range of pathogens
 – Across varying infections and populations
 – Protocol-defined endpoints
 – New FDA-defined early endpoints
 • Cessation of spread and resolution of fever
 • Percent reduction in infection area

• Safe and well tolerated
When Would I Use Ceftaroline for ABSSSI?

• In community-acquired infections
 – When MRSA suspected
 – When gram-negative bacilli suspected

• In nosocomial infections when MRSA is suspected

• As a replacement for double coverage for patients with suspected/proven MRSA infections involving SSS

• I would use in patients in my practice
Bad Bugs Need Drugs

10x '20

Ten new ANTIBIOTICS by 2020